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Abstract: We examine a special case of examinee choice, the Optional
Essay Problem, from the point of view of test equating. The Optional Essay
Problem involves equating essay scores when the examinees are required to
select an optional essay topic from a list of topics in addition to taking a
mandatory test required of all examinees. We derive conditions that must be
satisfied if the null hypothesis of 'equal difficulty' of the essays is true. (We
call this Livingston's Null Hypothesis.) If this hypothesis holds then there is
no need to equate the scores on the optional essays. Our conditions take the
form of inequalities about unobservable quantities that may be displayed
graphically. We illustrate them using a real example from the Advanced
Placement Examinations. Then we analyze Livingston's (1988) proposal for
adjusting essay scores in the Optional Essay Problem and explain it from the
perspective of test equating. We use our explanation to generalize his
proposal to two new proposals that are explicit about the assumptions they
make concerning the unobserved data. (We argue that every method for
adjusting the essay scores in the Optional Essay Problem must make
assumptions about unobserved data.) We illustrate the adjustment methods
with an example from the Advanced Placement Examinations. Finally, we
use the results for adjusting optional essay scores to propose comparable
procedures for directly adjusting linear composite scores that include both a
mandatory and an optional test score.
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1. INTRODUCTION

Testing programs often have examinations that consist of both
mandatory and optional parts. For example, many of the Advanced
Placement Examinations have a multiple-choice portion that is required of
all examinees and an additional set of essay topics from which each
examinee must choose one or more on which to write. The 'optionality' of
the essay is only in the topic chosen, not in whether or not to write the essay
portion of the exam. One result of these choices is that examinees do not all
take the same total test, and, more importantly, their own choices determine
important features of which complete test they do take. Allowing examinee
choice in such tests is often justified as a way of preventing examinees from
having to work on a 'large' test item (like an essay) that they feel is
inappropriate for them. Topics can be inappropriate for various reasons,
such as a special curriculum used in a course taken by the examinee, or their
academic concentration in the humanities versus the sciences.

In the applications that we have in mind, the scores given to the
optional portions of the test usually involve some subjective element; human
graders evaluate essays or problem solutions and assign scores to them. In
this type of grading, it may be difficult to apply exactly common grading
standards across different problems or to essays written on different topics.
In addition, it may be difficult to construct essay topics or problems that are
of equal difficulty. These considerations, in turn, can lead to cases of
unfairness to examinees that may undermine the good intentions that
justified allowing examinee choice in the first place.

For example, suppose that, in addition to the other mandatory parts of
the test, examinees must select one essay topic from a set of five topics.
Suppose also that topic 1 is inherently harder than the other topics or that the
grading of topic 1 is more stringent than for the other topics. Examinees who
had the misfortune to select topic 1 are possibly disadvantaged by their
choice. Their scores are lower than they would have been had they chosen
another topic. Can we separate the wisdom of an examinee's choice of topics
from the effects of unintended differential difficulty or differential grading
standards? This is the general problem of interest to us.

Differential severity of essay or problem grading and differences in
problem difficulty may not be obvious or intentional and this may make any
attempt to regrade all the essays or problems with new grading standards
unlikely to produce comparable results. When this occurs, statistical
adjustments to the scores (score equating) may be required to achieve a fair
test for all examinees.

To give focus to the paper we will consider in detail a special case of
examinee choice that we call the Optional Essay Problem. We remark that
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we do not limit the applicability of the Optional Essay Problem to cases
where the optional tests are actual 'essays'. For example, they also might be
math or science problems that the examinees must work out, showing all the
steps in their reasoning, which are then graded by one or more problem
readers.

THE OPTIONAL ESSAY PROBLEM: Suppose that the complete test is
made up of a mandatory part, with raw-score denoted by X, and a single
optional 'essay' ; and that each examinee must select a topic for the optional
essay from a list of K topics. If an examinee chodses topic i, we denote the
raw score on essay topic i by Yi.

The problem, then, is to equate the scores on the optional essay topics
so that the examinees are not unfairly disadvantaged if there are differences
in difficulty or in the severity of the grading across the topics. The only data
available from a single examinee is a pair, (X, Yi), for some topic i that
varies for each examinee.

Our approach is to treat this as a test equating problem with missing
data. The missing data are the scores on all the essays that the examinee did
not select. If an examinee chooses to write on topic 1, then Y1 is observed,
but Y2 , Y3 , YK are all missing for that examinee. The way that we will
decide on the need to equate the essay scores is to estimate what the
marginal distributions of Y1 , Y2 , ..., and YK would be if each examinee had
been assigned an essay topic at random, i.e., had exercised no choice of
essay topic. If the resulting estimated distributions of some of the Yi scores
are notably different from the others, then equating may be necessary. We
will use linear, observed-score equating methods in this paper because they
involve only first and second moments of distributions and produce simple
linear equating functions (Angoff, 1971; Holland and Rubin, 1982; Petersen,
Kolen, and Hoover, 1989). However, the more general observed-score,
'kernel equating' methods described by Holland and Thayer (1989) also fit
into the scheme described here. We will summarize some simple facts about
linear observed-score equating after we discuss Livingston's Null
Hypothesis in section 2.

A basic assumption of our approach is that it makes sense to consider
the essay scores for the topics that an examinee did not select as missing data
(i.e., data that could have been observed but wasn't). This is a subtle point
because it assumes that each examinee could have selected a different essay
topic from the one selected. This is an assumption about the strength of the
determinants of that choice. There is an implicit 'similarity' between the K
'essay topics' in our approach. This similarity might not be plausible in
some instances of examinee choice, and our methods would not necessarily
be applicable to such settings. For example, examinees usually select foreign
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language Achievement Tests on the basis of the languages that they studied
in school (or have other familiarity with). The determinants of an examinee's
selection to take a German rather than a French Achievement Test are very
strong and it is often implausible to imagine such an examinee selecting a
language exam for which they have no preparation. It may not be useful to
regard this case of examinee choice as a problem of missing data.

A useful criterion for testing whether or not our approach might apply
to a given situation is to ask if it would be appropriate to assign the essay
topics at random to the examinees instead of letting them exercise their own
choice in the selection. When the choice between topics is relatively hard for
examinees to make (i.e., the choices are not strongly determined) then
random assignment might be appropriate, but when it is easy for examinees
to choose between the options (i.e., the choices are strongly determined),
random assignment is probably not appropriate. Wthner, and Thissen (1993)
use 'big choice' and 'little choice' to distinguish between choices that we
have described as 'easy' or 'hard.' In practice, when there are several essays
topics to choose from, an examinee will find it easy to eliminate some topics
from consideration and hard to choose from the rest.

When random assignment of topics is inappropriate, the choices the
examinees make become an essential part of the test and this raises
important and serious issues of score comparability that are not easily settled
either by fiat or by psychometric means, e.g., see Wainer and Thissen
(1993).

Finally, we think it is important to remember that the question of
whether or not to equate the scores on the optional essays arises only
because examinees exercise choice in the selection of topics. If the topics
had been assigned at random to the examinees then they would obviously
have to be equated and standard random-group methods would be
appropriate (Braun and Holland, 1982). One of the interesting things about
the Optional Essay Problem is that examinee choice has the dual effect of (a)
making the choice of an appropriate equating technique uncertain and (b)
calling into question whether or not equating is necessary at all.

The remainder of this paper is organized as follows. Section 2
introduces notation and considers the situation in which it is unnecessary to
equate the essay topics, we call this `Livingston's Null Hypothesis.' In
section 3 we derive inequalities that must be satisfied by the data if
Livingston's Null Hypothesis is true, and in section 4 we illustiate these
ideas with a real data example. In section 5 we show how consideration of
the mandatory test score, X, can imply additional inequalities that must be
satisfied by the data, and then illustrate these results of using X in section 6.
Section 7 addresses what to do if we reject Livingston's Null Hypothesis,
and decide to make score adjustments. We first analyze a proposal of
Livingston's and then use our analysis to generalize Livingston's approach



to achieve his goals. Section 8 illustrates our proposal and Livingston's
proposal on real data. Section 9 generalizes the proposals of section 7 to
procedures for adjusting composite scores directly rather than simply
adjustirg the essay topic scores and then using them interchangeably in a
linear composite with X. Finally, section 10 makes a few additional points
and summarizes the rest of the paper.

2. LIVINGSTON'S NULL HYPOTHESIS

Livingston (1988) suggests that evidence concerning the null
hypothesis of 'equally difficult essay questions' may be used to specify the
amount of 'correction' given to the essay scores in the Optional Essay
Problem.

The attempt to produce equally difficult questions may not succeed
completely, but in the absence of any statistical information to the
contrary it provides a reason for considering raw scores on the
alternate questions to be comparable. (Livingston, 1988, page 3)

His position is that if the topic selection, the scoring rubrics, the grading
instructions and the training of the essay readers are all carefully
implemented then the null hypothesis that the raw scores on the various
topics are comparable may be valid and there may be no need to equate or
otherwise adjust the essay scores, Y1, . . Y. Are there any data routinely
collected in the Optional Essay Problem that can shed light on Livingston's
Null Hypothesis? In order to answer this question we need to give more
precision to its statement, which we shall do in defining LI-10, below.

In observed-score test equating we compute or estimate the marginal
distribution of each test score on a common population of examinees.
Differences between these distributions are then used to devise adjustments
to the scores--e.g., tests with higher mean scores are easier for the population
and these scores are, therefore, adjusted downwards while tests with lower
mean scores are harder for the population and these scores are adjusted
upwards. If there are no differences among the score distributions then no
adjustments are necessary since the tests are equally difficult for the
population.

We shall interpret Livingston's Null Hypothesis in these terms, but
which population shall we use? In the Optional Essay Problem, examinees
get to select which topic they will write on, and therefore the sub-population
(Pi) choosing essay topic i is non-random and subject to selection. In view
of this, we shall use the whole population of examinees (all those taking the
mandatory test X) as the population (P) on which to compute the observed-
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score equating function. We recognize that in the Optional Essay Problem
self-selection is operating and that this will require us to make assumptions
about the distribution of essay scores the examinees would have received if
they had chosen to write on a topic different from the ones that they chose.
Our approach is to see if these assumptions about selection are compatible
with the observed data and Livingston's Null Hypothesis. Furthermore,
because we are linearly equating the essay scores we will only concern
ourselves with the first and second moments of distributions; we regard two
distributions as the same if they have the same mean and variance. This
leads to the following precise version of Livingston's Null Hypothesis.

= = i-12 = = 11K, and

02 = al2 = a22
=

=

where

= E(Yi), and (512 = Var(Yi).

Thus, Ili and ai2 are the mean and variance of the essay score Yi over the
whole population (or equivalently, in a large random sample not subject to
selection). In our missing data approach to the Optional Essay Problem, we
let Ri be the 0/1 indicator for the examinee's choice of essay topic, i.e.,

= 1 if the examinee chooses topic i,
Ri = 0 otherwise.

In the language of Little and Rubin (1987), the Ri are the missing data
indicator variables. The mean and variance of Yi for the examinees who
chose topic i are then defined and denoted by

jail = E(Yi I Ri = 1), and ai12 = Var(Y1 I Ri = 1).

The quantities, xj1 and (5;12, are estimated by the sample mean and variance
for the examinees who chose topic i, and in general they are not equal to the
population mean and variance, Ili and ai2 that are referred to in Livingston's
Null Hypothesis, L110. Along with J1j1 and aii2, there are the corresponding
quantities for the examinees who did not choose topic i, i.e., for whom Ri =
0,



gip = E(Yi I Ri = 0) and ai02 = Var(Yi I Ri = 0).

Finally, let

pi = Prob{Ri = 1},

the probability of selecting topic i, and

= 1 - pi = Prob{Ri = 0},

the probability of selecting a topic other than topic i.

LINEAR OBSERVED-SCORE EQUATING: One reason for stating LH0 in
terms of the means and variances is that these quantities play a central role in
the simplest of all test equating methodslinear observed-score equating. All
observed-score equating methods take place on a specific population of
examinees (Braun and Holland, 1982). In our problem, this will be the
population of all examinees taldng the test X, population P. The test scores
to be equated, say Yi and Yj, however are not observed on this P but on the
self-selected sub-populations (Pi and Pj) for which Ri = 1 and R = 1,
respectively. Hence, the relevant means and variances needed to equate Yi to
Y. are not p.ii, gji, ai12 and 912, which are estimated from the self-selected,
observed data for Y1 and Y. Instead, the relevant means and variances are

Gi2 and 92.

The linear equating function for equating Yi to Yj on the population
taking X is given by the following well-known linear equating formula:

= + (Gi (7)(yi (1)

where yi denotes a possible Yi-score and Y(y) denotes the transformation
of this score to the scale of Y.

J
This transformation of Yi-scores will produce

scores with the same mean and variance over P as Y. has. We note that if
LI-10 is true then the transformation defined in (1) is simply the identity
transformation, indicating that no adjustment is necessary to equate the
scores of Y. to Y.

1 J.
An essential feature of this approach is that it makes explicit the fact

that the equating of Yi to Yj will involve estimates of pi, pj ai and aj, and
that these in turn will involve making assumptions about the missing data. In
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our opinion, it is impossible to equate the essays in the Optional Essay
Problem without making some sort of assumptions, tacit or explicit, about
the missing data. Later we will examine Livingston's (1988) 'ad hoc'
procedure for adjusting essay scores in the Optional Essay Problem with this
in mind.

3. AN INEQUALITY FOR p. AND a2

Theorem 1 summarizes a relationship that must hold between la, a2
and the various quantities defined above when Livingston's Hypothesis
holds.

Theorem 1: Under LH0, we have

2
c5

2
an2Pi. cli Tiicli) (i5.1 11 )2 (2)

The proof of theorem 1 is a straight-forward-but-tedious calculation
based on computing pi and ai2 by conditioning on the two values of Ri, and
then replacing 1.4 and ai2 by 11 and a2. Equation (2) expresses the common
values, and a2, assumed in LH0, in terms of quantities that can be
estimated by the observed data, and the unknown variance, ai02, which can
not be so estimated.

Our approach to testing Livingston's Hypothesis is to make
assumptions about aio in terms of its relation to ail and to see what
implications these assumptions have for 1.t and a2 via equation (2). We
define Ai as the ratio

SO

Ai =

0.102 = (Ai)2

(3)

(4)

Next we exploit the phenomenon that test score variances are usually
quite similar across different sub-populations even though the means of the
test scores may vary widely. For example see Table 2 from Holland and
Wainer (1990). This can be expressed by inequalities of the form

AL < Ai < Au, (5)
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where AL and Au are a priori bounds. Examples of plausible values for AL
and Au might be AL = .90 and Au = 1.10, but other values for these bounds
on the Ai may be useful too. We note in passing that a Bayesian analysis in
which the Ai are assumed to have a continuous distribution centered on 1
may be developed, but we have not pursued this approach here.

We may combine the inequalities in (5) with the formula given in (2)
to obtain conditions that the common mean and variance, pt and 02, must
satisfy if (5) and LI 10 are true for the specified a priori bounds AL and Au.
These inequalities are given in Theorem 2.

Theorem 2: If LII0 is true and if the inequalities in (5) are satisfied then 1.1.
and 02 must satisfy these two inequalities for each essay topic (i = 1 to K),

and

(a) 02 < ai12[pi + (Au)2 q1J + (PAO (RH )2

(b) 02 > 0112{pi + (AL)2qi] + (pikt) p. )2.

(6)

(7)

Statements (6) and (7) define a U-shaped region sandwiched between
two parallel parabolas in the (l, 02)-plane, with II along the horizontal axis
and 02 along the vertical axis. The two parabolas are defined by the
quadratic equations formed from (6) and (7) by replacing the inequalities
with equalities. Figure 1 shows the two parallel parabolas for the data for
essay topic 2 from Table 1 introduced in section 4, below. In Figure 1, AL =
.90 and Au = 1.10.

(Insert Figure 1 about here)

For any essay topic i, these two parabolas share a common vertical
line of symmetry, at II and differ only in the height of their minima.

The inequalities (6) and (7) together require the possible values for the
common mean and variance in LI 10 to lie in this U-shaped region. However,
this must hold for each i = I to K, so the region of (R, a2)-values that are
consistent both with the data and the inequalities in (5) is the intersection of
K such U-shaped regions in the (p., 02)-plane, see Figure 2 in section 4,
below. Depending on the values of AL and Au, this intersection may or may
not be empty. If it is empty, then this version of Livingston's Hypothesis is
not consistent with the data and the assumptions about the ratios of the



variances in (3) and (5). When this region is not empty it specifies all of the
pairs of values of (1.1, a2) that are consistent with L110, the data and our a
priori assumptions.

4. EXAMPLE I

Table 1 gives the means, variances and covariances for an example of
the Optional Essay Problem, the 1987 administration of the Advanced
Placement Examination for European History. In this example, the optional
essay topics are topics 2 through 7 while topic 1 is required of all
examinees. In the example, topic 1 is ignored.

(Insert Table 1 about here)

Figure 2 shows the 6 pairs of parabolas for AL = .90, and Au = 1.10.
Their region of intersection is non-empty and is shaded in Figure 1. Figure 3
shows the 6 pairs of parabolas for AL = .95, and Au = 1.05. The region of
intersection for Figure 3 is empty. Thus, in this example, LH0 is consistent
with the data and ratios of standard deviations between 90 and 110 percent,
whereas it is not consistent with narrower limits on these ratios, i.e., between
95 and 105 percent.

(Insert Figures 2 and 3 about here)

5. BRINGING X INTO THE PICTURE

Information from the mandatory part of the test may provide
information about the relative 'difficulty' of the essay topics. Table 2
displays Livingston's (1988) example of a 'reversal' in the order of the
means of the optional essay scores from the order of the means of the
mandatory multiple-choice test.

(Insert Table 2 about here)

The point of Livingston's example is that the mean of the multiple-
choice score for the group selecting essay 6 (41.5) is the lowest mean of the
five groups, but the mean score on essay 6 for those same examinees (7.1) is
the highest of the five groups. This is an extreme example of a 'reversal' of
the essay and the multiple-choice score means. (There is also an example of
a much smaller reversal in Table 1, involving essays 2 and 4.) There is
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usually a positive correlation between test scores, so this reversal may
suggest that the grading of essay topic 6 is unduly easy relative to the
grading of the other essay topics.

Notice that the evidence here involves X, the test score that all
examinees have. The inequalities developed in section 3 do not involve X.
Our goal now is to derive additional inequalities in the spirit of those of
section 3, but which do involve X.

The first step is to reexamine the form of Livingston's Null
Hypothesis in LI-10. In the Advanced Placement example of the Optional
Essay Problem, the multiple-choice score X is not simply another variable
that is obtained from each examinee, but rather it is combined with the essay
score to produce a final linear composite raw-score that is then used to form
reported scores. Hence, consider the linear composite score

S1=X+wY1, (8)

where w > 0 is the relative 'weight' given to the essay part of the composite.
The composite score Si is subscripted with an i because it is based on X and
essay i. Note that w does not depend on which essay the examinee selects.
Our idea is to replace LI-10 with an equivalent hypothesis about the mean and
variance of the composite scores. Again, the distribution of the composites is
taken over all of the examinees, not just those selecting essay i. The resulting
generalized version of Livingston's Null Hypothesis can be stated initially
as:

E(S1) = E(S2) = . . . = E(SK), and (9)

Var(S1) = Var(S2) = . . . = Var(SK). (10)

However, (9) and (10) can be re-expressed in terms of other more
basic quantities. First of all, we see that (9) is equivalent to the first part of
LI-10 because

E(Si) = w

where i.tx is the mean of X over all of the examinees, and w is non-zero.
Secondly, we have

Var(Si) = ax2 w2(5,i2 + 2 (12)
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where ox2 is the variance of X over all of the examinees and axyiis the
covariance of X and Yi over all of the examinees. When i j,

Var(Si) = Var(S) (13)

if and only if

(w/2)[ai2 - 92] = axxi- ax-yr (14)

We want (14) to hold for all i j and for any value of w that we may choose.
The weight, w, is usually determined from considerations external to the
question of equating the essay scores and so we require that (14) holds no
matter what the choice of w is. This will happen if and only if

csi2 = 92 and sax-szi= axy.
J'

for all i j .

(15)

Combining these results we obtaM the Generalized Livingston
Hypothesis that is parallel to LH0.

Theorem 3: If (9) and (10) are to hold for any choice of the weight w then
(9) and (10) may be re-expressed as:

GLI10:

(17)

11 = =112 = =

2 2 2 d
= (51 = = = aK an

c = GXY1= GXY2 = = (3.XYK'

(16)

(18)

The version of the Generalized Livingston Hypothesis expressed in
(16)-(18) also can be motivated in other ways, for example, by adding to
L110 the additional requirement that all the Yi correlate equally with X over
the entire population of examinees.

Next we give the results that parallel Theorems 1 and 2 for the
covariance, c, in (18).

Theorem 4: Under GLII0 we have



where

c = xyi Pi + CY3CY0 qi (pi ) (gXii i-tx) P-)

axya = Cov(X, Y R1 = 1), cyx-y0 = Cov(X, Yi I Ri = 0)

= E(X I R = 1), and 1.1x = E(X).

(19)

The proof of Theorem 4 parallels that of Theorem 1.
When the correlations between X and Yi are positive, the natural

bounds for points in the (1.t, c)-plane are obtained from inequalities for the
ratios of the correlation of X and Yi for Ri = 1 and Ri = 0 as well as the
previous bounds assumed on the ratio of the variance of Yi when Ri = 1 and
Rj = 0. Let Bi be defined by

Bi = PxyjO/Pviii (20)

where pxyjo is the correlation from the covariance Cov(X, Yi I Rj = 0), etc.
Just as for the Ai, it may be plausible to assume that a priori bounds for Bi
exist, i.e.,

BL<Bi<Bu (21)

for some values of BL and Bu, such as BL = .90 and Bu = 1.10. The next
theorem summarizes the resulting two inequalities for c and pt.

Theorem 5: If GLI-10 is true and the inequalities (5) and(21) hold then c and
satisfy the following two inequalities for all i = 1 to K.

and

(a) c < oxyji (pi + qj (oxioioxii) Au Bu)

+ (pi ) (Axil (-41 Pt) (22)

(b) C> faxyii (pi + qi (aXi0k5Xil) AL BL)

+ (pi Iq ) 1-tx) (23)



where

4:5)02 = Var(X I Ri = 1), and axi02 = Var(X I Ri = 0).

Thus, oxii2 is the variance of X in the group who choose essay topic i and
axio2 is the variance of X for the rest of the examinees.

Inequalities (22) and (23) define a region in the (g, c)-plane
horizontal and c vertical) that is a strip lying between two parallel lines, both
with slope

(pi ) P-x). (24)

Theorem 5 says that the region of (p., c)-values that are compatible with
GLI-I0, the data and the a priori bounds AL, Au, BL, Bu is the intersection
of these K strips. It is possible, for particular choices of axyji, amp axio,
AL, Au, BL, Bu, pxil, p.x and ij that no pair of values of (g, c) can satisfy
all of the inequalities for i = 1, . . . , K. Hence, by bringing the mandatory
portion of the test into the picture we double the number of inequalities that
must be satisfied. This can make it even harder for GLI10 to be acceptable in
light of the data and our a priori assumptions expressed by the bounds AL,
Au, BL, Bu.

In Livingston's (1988) analysis he considers the case when the
correlations are zero. Our use of ratios of correlations will not work in that
case. However, equation (19) is valid even if pxyji= 0, and inequalities
similar to. (22) and (23) can be developed for this case. The region of
possible values for (p,, c) under GLH0 will then be the intersection of
several strips in the (g, c)-plane that depend on the data, the a priori bounds

L and Au, and our a priori assumptions on the possible sizes of the
correlations pxyp. We do not see how the size of pxyji can tell us much
about the plausibility of either GLH0 or LH0, contrary to the position taken
by Livingston. In practice we expect pxyji to be modest and positive and so
we will not pursue the case of pxyji = 0 further.

Even though we cannot illustrate the following point with the data in
Table 2, inequalities (22) and (23) do allow us to see how 'reversals' like the
one in Table 2 might lead to violations of Livingston's Null Hypothesis. The
slope (24) of the parallel lines in the (p., c)-plane specified by (22) and (23)
is positive when the mean of the mandatory section scores for examinees
who chose essay topic i is less than the overall mean of the scores on the
mandatory section, and is negative when it is greater than the overall mean.
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In addition, the larger 11i1 is the more to the right these lines are shifted.
When we have a 'reversal,' as in Table 2, a pair of lines far to the right
(large value for pii) have large positive slopes rather than the expected
negative slopes. This can easily make the intersection region empty so that
there are no (II, c)-values that are compatible with Livingston's Null
Hypothesis.

6. EXAMPLE 2

We return to the data in Table I. The relationship

ax2 = Pi (3Xi12 + qi GXiO
2+

(Pi / qi)(gxil 11)02 (25)

allows us to compute axio from the items in Table 1 for use in (22) and (23).
All other values needed are presented in Table 1. Figure 4 shows the
resulting pairs of lines for the limits AL = .90, and Au= 1.10, and BL = .90,
and Bu = 1.10. Figure 5 shows the resulting pairs of lines for the narrower
limits AL = .95, and Au = 1.05, and BL = .95, and Bu = 1.05.

(Insert Figures 4 and 5 about here)

In both Figures 4 and 5 the intersection of the six regions is non-
empty so that there are combinations of g and c that are compatible with the
data and the restrictions (5) and (21).

If we adopt the range AL = BL = .90, and Au = Bu = 1.10, then
Livingston's Hypothesis (expressed either as GLH0 or L110) is compatible
with the data in Table 1, and we may conclude that because we cannot reject
it there is no need to equate or otherwise adjust the essay scores. For those
who think that equating is desirable in this example the onus is to provide
evidence that the above bounds on the Ai and Bi are too big. The data in
Table 1 can not provide such evidence. Moreover, no data routinely
collected in the Optional Essay Problem can provide it. However, through
comparisons with other tests and data collected in special experiments (e.g.,
Wang, Wainer and Thissen, 1993), it may be possible to build up useful
prior knowledge for the a priori choices of AL, BL, Au and Bu. For
example, the 50 observed standard deviations of SAT (V+M)-scores by State
given in Table 2 of Holland and Wainer (1990) range from .87 to 1.11 times
their mean value of 201. The standard deviations of X and the Yi in our
Table 1 also show a similar small range of values. While these data do not
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give direct evidence about the Ai, they do support the intuition that the
variation of standard deviations of test scores across populations is often
small, and that the choices of AL = .90, and Au = 1.10 do not give an
unduly narrow range.

From Figure 2 the resulting range of possible i -values is roughly
between 6 and 8 and from Figure 4 it is roughly between 6 and 9. Thus, 1.1. <
6 is not compatible with these data and with assumptions (5) and (21). We
note that the average essay scores for each row in Table 1 all exceed 6
except for essay topic 7 for which the mean is 5.9, slightly below 6.
Therefore, the examinees who chose essay 7 are not from the top of the
distribution of scores for that essay. According to this analysis, examinees
who would have received high scores on essay 7 actually chose other essay
topics to write on--and probably got high scores on them. Examinees who
did choose topic 7 were from the low end of the score distribution and
probably would have received low scores on any essay topic. The question
of whether or not the examinees who chose topic 7 would have done better
to have chosen a different essay topic can not be answered from the analysis
or data presented here.

7. WHAT IF WE REJECT LIVINGSTON'S NULL HYPOTHESIS?

In this section we first discuss Livingston's 'ad hoc' proposal for
equating the essays in the Optional Essay Problem, and we then make
alternative proposals that are in the same spirit as Livingston's but which are
more simply motivated, in our opinion. Our approach involves interpreting
various equations given in Livingston (1988) in terms of observed-score test
equating. Livingston does not use this interpretation to describe his formulas.

In order to have a simple way of referring to the several populations of
examinees that arise in the analysis we remind the reader that P is the entire
population of examinees who take X and write on some essay topic from the
list of K topics and that Pi is the sub-population of P that writes on topic i.

LIVINGSTON'S 'AD HOC' ADJUSTMENT: Livingston's procedure is
fairly complicated, so we break it down into three steps.

Step 1. Equate Yi to each of the other Yj and for examinees in Pi
obtain the converted value of the observed yi to the scales of the other Yj' s.
Call these converted values Y..*(y.). Livingston uses a special version of
equating that we will discuss momentarily.
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Step 2. Obtain 'imputed' values, yJ;
,A;
mputed(Yi), for j i for each

examinee in Pi. These imputed values are weighted averages of the observed
value yi and its equated value in the Yj scale, Yij*(yi) of the form:

Yj, imputed(Yi) = (1 Pxyji) Yi Pxyil Yij*(Yi)- (26)

Step 3. Compute the adjusted essay score as the simple average of the
1 observed and the K - 1 imputed essay scores for each examinee:

Yadj = [yi Ej#i{ Yj, imputed(Yi)}]/K.

If we define Yii*(yi) as

Yii*(Yi) =

(27)

(28)

then we may combine the effect of steps 2 and 3 into a simple expression for
yadj , as follows.

Let p denote the average of all the correlations, pxy ji:

13- = [ Pxyil] /IC (29)

and let Y(y) be the following weighted average of the converted values:

Y(y) = [ Ej PxyjiYij*(Yi)] [ PxYill. (30)

We may think of Yi(yi) as a transformation of yi into an 'average
scale' of the K essay scores determined by the equatings done in step 1 with
weights proportional to the correlations, pxy.i. Livingston's final adjusted

J
essay scores, yadj, can be expressed in this notation as

Yadj = (1 P ) Yi (31)

The important feature of Livingston's proposal, in our opinion, is its
form expressed in (31) rather than the particulars of its definition. The raw,
unadjusted value, yi, is averaged with the average converted value, Yi(yi).
The weight used in the averaging in (31) reflects Livingston's degree of
belief in the relative importance of the converted scores and the original
unadjusted score. (Livingston is quite explicit that he regards the evidence
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for maldng an adjustment to the essay score Yi as the greatest when py1 is

1.0, and the least when this correlation is zero.)
We now turn to the equadngs referred to in step 1. The method that

Livingston proposes for finding the converted scores that we denote by
Y..*(y-) may be interpreted as an example of 'equating to a common test,'ij
Angoff (1971), or 'equating through another test,' Braun and Holland (1982)
and is often referred to as 'chain equating' by ETS test statisticians
(although, in chai.n equating the operational method used is usually
equipercentile rather than linear equating). The idea is to linearly equate Yi
to X on Pi, then to equate X to Yi on Pi and finally to compose or 'chain
together' these two equatings to get a linear transformation from the Yrscale
to die X-scale to the Yscale. The first linear equating results in the
function:

X1(y1) = Xi1 + (axii (32)

The subscript i on Xi() indicates that the equating is on Pi. The second
equating results in the function:

Yi (X) = + (0) / axi - 1), (33)

where p.xii and GXj1 are the mean and standard deviation of X for the
examinees selecting topic j, defined earlier in Theorems 4 and 5. When the
two functions, Y(x) and Xi(yi), are composed or 'chained together' we get

Yij*(Yi) = Yj(X1(yi.))
(34)

+ (91 / cjXj 1)(RXi 1 (aXil axj1) (91 /

which is formula (7) of Livingston (1988), in our notation.

LIVINGSTON'S MISSING DATA ASSUMPTIONS: A key theoretical
requirement of test equating is that the resulting equating function should not
depend on the population on which it is computed. This gives us a tool for
identifying the assumptions about the missing data that Livingston's
proposed procedure implicitly makes. Braun and Holland (1982, pg. 37)
point out that in order for chain equating to give unbiased results the two
equating functions that are chained together, (i.e., (32) and (33)) should not
depend on which population is used for the equating. In the present case this
means that equating Yi to X on Pi ought to give the same equating function
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as equating Yi to X on Pj, where, in fact, Yi is missing data. If we were able
to compute the linear equating function of Yi to X on Pj, the result would be

where

X(y) = (axj1 gij1),ij (35)

Rij1 = E(Yi i R = 1), and Giii2 = Var(Yi I Rj = 1). (36)

The only way two linear functions can be identical is for their slopes and
intercepts to be the same. We conclude that the implicit assumptions made in
Livingston's proposal are that the missing data, Yi when Rj = 1 and i # j,
satisfies these conditions

and

aXj 1 / aij 1 = O'xi / Gil, Or

Var(Yi I Rj = cii12(axi12

1_tXj 1 (aXj 1 / (Yij 1) 1_4j 1 = 11)(11 (axii / ail) or

E(Yi I Rj = 1) = Mu + (all/ pxj1 -

(37)

(38)

We may use (37) and (38) to find estimates of gi and cs.j2 that are
consistent with Livingston's assumptions about the missing data. They are
summarized in Theorem 6.

Theorem 6. If E(Yil R = 1) and Var(Yi I Rj = 1) are given by (38) and (37),
respectively, for all i and j, then

and

= E(Yi ) =1-41 03i1/ °MIX 1-1X

ai2 var(yi ) _ 2 / axi12) ax2.

(39)

(40)

The proof of the theorem follows from multiplying both sides of (37)
and (38) by pj, summing over all j and interpreting the results. These results
mean that (a) the mean, Ili, stands in the same relation to Rii, as the mean,
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does to in terms of the standard deviations, ail and axii,
respectively and (b) the ratio ai of to aii is the same as the ratio of ax to

GXil.

AN AL LERNATIVE PROCEDURE: Consider an adjusted essay score of
the form

aj = (1 - Wi) yi + W1 Ci(y1), (41)

where Ci(yi) is a transformation of yi to a common scale, and Wi is a weight.
We will discuss Ci() and Wi in turn.

In Livingston's procedure cio is Yi() defined by (30) and (34). The
scale to which this choice of Co maps yi is a weighted average of the scales
of all the essays scales using the pxyd as the weights. The reason for using

a weighted average of these scales is to avoid the arbitrary choice of the
scale of one of the essay topics as the scale for the other essay topics. The
resulting 'average' scale is somewhat unfamiliar. To avoid this we propose
using the scale determined by the mean and variance of the total pool of raw
essay scores. Let

= and Gy2
= (5112 Pi + Zi 0-41 I: -02 Pi,

then p.y and TYy2 are the mean and variance of the entire set of essay scores
ignoring that they come from different topics. If we obtain estimates of j.ti
and ai2 by making some particular assumptions about the missing data then
the transformation

(42)

Ci(y) = ( ay / ai)( 1-4.) (43)

will map the scale of Yi to the scale of the raw essay scores with mean liy
and variance -ay2.

The transformation given in (43) can be used with any set of
assumptions about the missing data that lead to estimates of jai and ai2. In
particular, using (39) and (40) we can obtain a version of (43) that makes use
of Livingston's assumptions about the missing data. There are, however,
other alternatives to the chain equating used by Livingston. The most well-
known is linear, anchor-test equating in which X is used as the anchor-test
rather than as an intermediate test to which Yi and Yi are both equated
(Angoff, 1971, 1982; Braun and Holland, 1982; Petersen, Kolen and
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Hoover, 1989). This method makes explicit assumptions about the missing
data that are different from those made by Livingston. These assumptions
are related to 'ignorable non-response,' Little and Rubin (1987).

Consider the conditional distribution of Yi given X and the missing
data indicator variable, R, i.e.

ProbfYi= yIX=x and Ri=r1 (44)

where r = 0 or 1. If the probabilities in (44) do not depend on r, then the
missing data for Yi is said to be ignorable given X. A consequence of
ignorability is that the regression function

E(Yi I X = x and Ri = r) (45)

and the variance function

Var(Yi I X = x and Ri = r) (46)

do not depend on r. If, in addition, we make the further modeling
assumptions that the regression function is linear and the variance function
is constant we obtain the two basic assumptions of linear anchor-test
equating (also known as Tucker equating):

E(YiIX=xandRi= 0)=E(YiIX=xandRi= 1)

= 4i + (oh/ oxii)Pxyp.( x 1-txi1)

and

(47)

Var(Y1 I X = x and Ri = 0) = Var(Yi I X = x and Ri = 1)

= P2xYii)- (48)

Theorem 7 summarizes the resulting expressions for pi and 1:3i2 that follow
from (47) and (48).

Theorem 7: If (47) and (48) hold then pi and ai2 are given by:

(a) = (1 PXYji) (ail/ (49)



(50)

We have written (a) and (b) in Theorem 7 in ways that emphasize that
under an ignorable (given X) missing data mechanism, gi and ai2 are
weighted averages (using PXYil and P2xy1i as weights) of (a) the estimates

of pi and ai2 that are implicit in Livingston's procedure (equations 39 and
40), and (b) the raw mean and variance, gii and ai12. Livingston's objection
to using linear anchor-test equating as the sole basis for adjusting the essay
scores is that when pxy = 0 this approach will result in assuming that

j=i1 and, ai2= 0.112 (51)

which will cause a large adjustment to the essay scores when the differences
between the p.j1 are large; when the pxy = 0 this is not desirable, in
Livingston's opinion.

One way to avoid this is to use an adjusted essay score of the form
(41) with

Wi = Pxyil,

rather than Livingston's choice of

Wi = p .

(52)

(53)

Our alternative to Livingston's proposal uses an adjusted essay score
of the form (41), using (52) as the weight on the converted score and using
(43) to define the converted score. In our view the natural choice for gi and
ai in (43) come from the assumption of ignorable non-response (i.e.,
Theorem 7) rather than Livingston's proposal to equate Yi to Yi through X.
However, our approach requires the user to make an explicit assumption
about the missing data (i.e., choose an equating method), so using either
Theorem 6 or 7 or some other estimates of Ili and ai is compatible with our
approach. The result is an adjusted essay score of the form:

aj = (1 Pxyji) yi PXYil[ -61/I yi
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where pi and Gi2 are defined in Theorem 7 (if linear anchor-test equating is
used to equate Yi to Yi) or in Theorem 6 (if chain equating is used to equate
Y. to Y.).

1 3

Our proposal has many of the features of Livingston's proposal given
in equation (31). In particular, it tends to dampen the amount of the
adjustment that is made to the scores on topic i by the size of the correlation
between X and Yr-the smaller the correlation, the smaller the adjustment. It
is also a simple linear function of the essay score alone, i.e., two examinees
with identical Yrscores but different X-scores will get exactly the same
adjusted Yrscore. It differs from Livingston's in that different assumptions
about the missing data, i.e., Theorems 6 or 7, can be used to compute the
converted scores, Ci(yi), from (43). Finally, the scale of the adjusted essay
scores in (54) is closely related to the original unadjusted essay scores
through cio.

8. EXAMPLE 3.

Table 3 gives, for the AP European History data in Table 1, the values
of Ili and 6i under the two different sets of assumptions about the missing
data given in Theorems 6 and 7.

(Insert Table 3 about here)

The two sets of assumptions about the missing data give similar
estimates of Ili and ai except for 113 and 117. In addition, all of the estimates
of a j for the chain-equating assumptions equal or slightly exceed the
corresponding ai estimates for the anchor-test equating assumptions. The
conclusions about the relative difficulty of the essay topics differ somewhat
across the two sets of assumptions. For the anchor-test assumptions, topic 3
is the easiest (i.e., least severely graded), topics 2 and 5 are the next easiest,
topic 6 the next easiest, and topics 4 and 7 the most difficult (i.e., most
severely graded). For the chain-equating assumptions, topics 2, 3, 5, and 7
are the easiest and are about equally difficult, topic 6 is more difficult and
topic 4 is the hardest. Both sets of assumptions include topics 4 and 6 among
the most severely graded, but they differ substantially on their assessment of
the difficulty of topic 7. Topic 3 has the highest estimated mean score under
both sets of assumptions, but the anchor-test assumptions assess it as a half a
raw-score point easier than the next easiest essay topic. The chain-equating
assumptions assess topic 3 as only slightly easier than the other three easy
topics.
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(Insert Tables 4, 5, and 6 about here)

Tables 4, 5 and 6 give the adjusted scores using Livingston's method
and the two methods we have proposed. We used formula (31) for
Livingston's method, and formula (54) with j.ti and ai given by Theorems 6
and 7 for our two methods. All three methods do not make strong
adjustments to the essay scores and if rounded to the nearest integer,
Livingston's Ad Hoc procedure and the version of our procedure that uses
chain equating make no adjustment at all to the essay scores. The version of
our procedure that uses anchor-test equating yields adjusted scores in this
example that do not round to the original essay scores in 7 cases. The scores
of 1 through 6 for essay topic 3 are adjusted downwards to scores that round
down one integer. This is in line with the anchor-test equating estimate of 1.13
= 8.0, making it the easiest of the essay topics. The score 15 for essay topic 6
is adjusted up to a score that rounds up one integer. One might have thought
that the anchor-test assumptions would have also resulted in stronger
upwards adjustments of the scores for topics 4 and 7. The reason they do not
is that the correlations pxy3i and pxy7i are smaller than the othersfrom
Y2 tO Y7 these correlations are: .43, .48, .39, .46, .49, and .37.

Thus, in this example the adjustments are small for all the methods.
This is compatible with the results we found earlier regarding the
acceptability of Livingston's Null Hypothesis for these data.

9. ADJUSTING COMPOSITE SCORES.

As mentioned earlier, in the applications that we have in mind, such as
the Advanced Placement Examinations, the raw scores for the test are
weighted composites of score on the mandatory test, X, and the optional
essay, Y, of the form:

= X + wYi. (55)

The X-score will usually be equated by conventional anchor-test
methods to older forms of the multiple-choice part, so when we refer to X it
is often already converted to an 'X-scale' (although it need not be in
particular applications).

The weight , w, is often of the form

(56)
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so that w is proportional to the ratio of the standard deviation of X to that of
the essay scores where no distinction is made between the essay topics. The
multiplier F can reflect the relative importance given to the essay score
compared to the multiple-choice score X, e.g., F might reflect the amount of
time spent on the essay compared to that spent on the multiple-choice part,
or possibly the ratio of their reliabilities.

One approach to forming the composite score is simply to replace Yi
by the adjusted score Ai, from (41) or (54), i.e.,

Ai.Si, adjusted = X + Nv (57)

We might call this the `plug-in' procedure, for obvious reasons. While
probably reasonable in many situations, the plug-in procedure may be
objected to on the grounds that the scores that need to be equated are the raw
scores that give rise to the reported scores and these are the raw composite
scores not the raw essay scores. An alternative to adjusting the essay scores
first and then using the adjusted scores in the composite is to adjust the
composite scores directly. In this section we amplify the discussion of
section 7 to the case of a composite score.

Usually the weight w can be computed from the data that is on hand
prior to any adjustment procedure; in any event, we will assume w is a
known value. The composite score, Si = X + w Yi, is very much like the
score, Yi, in that it is only observed for the sub-population of exarninees who
write on topic i, Pi. We propose an adjusted composite score, si*, of the
form:

si* = (1 - Si + PxsiIl Ps + ( as/ asi)( yi ) ],

where

(58)

si is the unadjusted composite score from (55),

pxsii is the correlation of X and Si on Pi,

Rs and Cis2 are the mean and variance of the composite scores
formed without regard to the essay topics involved, and

psi and asi2 are the mean and variance of Si over the whole

population of examinees formed by making some assumptions about the
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missing data, i.e., the values of Si for the examinees who did not choose
topic i.

As before, we suggest two alternative sets of assumptions that
correspond to chthn equating and anchor-test equating, respectively. Here
are the resulting formulas for and asi2 for these two sets of missing data

assumptions.

Chain equating case:

11Si E(Si ) = (ay./ aXil)( P-X

and

(59)

asi2 = Var(Si ) = (asii2 axii2) ax2. (60)

Anchor-test equating case:

1-1Si = (1 PXSil) (aSil/ axil)( 1-tx

and

as12 = p2XS )cysii2 P2xs1i(asii2iaxii2)0x2.
I

!Axil)] (61)

(62)

In (59) to (62), Rsii, as112, and pxsii denote the mean, variance and
correlation with X of Si for the examinees who choose topic i. They replace

ai12, and Pxyi in Theorems 6 and 7, respectively.

The adjusted composite score defined in (58) has the feature that the
effect of the equating is dampened by the correlation between X and the
composite score, pxsii. Because Si contains X, these correlations will
usually be much higher than those between X and Yi and the overall effect
will be to put most of the weight on the equated composite scores rather than
the unadjusted composite score, si.

10. DISCUSSION AND SUMMARY.

Our proposals, e.g., formulas (41), 54), and (58), are 'ad hoc' in the
same sense that Livingston's is because there is no real justification for the
simple 'weighted average' form of the adjusted scores or for the choice of
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weight, Wi = pxyil. The simple form (41) does have reasonable properties

because it dampens the amount of adjustment made to the essay scores, and
in the face of the test developers' attempts to make the scores on the optional
essays comparable this does seem like a reasonable thing to do. That (41) is
a simple weighted average is also good because it is easy to understand.

The larger problem is the choice of weight, Wi. It seems to us that Wi
should reflect the degree of belief of the user in the assumptions made about
the missing data. These assumptions are always untestable when the missing
data is really missing, as it is always is in the Optional Essay Problem.
Hence, making any particular assumption about the missing data always
involves some degree of belief unsupported by the data. Setting Wi = PXYil

has no basis other than the intuition that the greater Pxy1i is the more
plausible it is to believe assumptions underlying the equating. Livingston
mentions that any appropriate increasing function of pxyii is a possible
candidate for the weight. Our analyses do iot even suggest that Wi ought to
be any function of pxyii, but like Livingston, until there is a better proposal

for Wi we think Wi = pxy is a reasonable place to start.

If the correlation between X and Yi is used as the weight, Wi, in
formula (54) it may be useful to consider replacing pxyii in (52) by a
correlation, pxy., that has been 'corrected' for 'restriction of range'. This

correction can sometimes be substantial. One way to develop a restriction of
range correction for Pxyi is to assume that the missing data for Yi are
ignorable given X, as is done in anchor-test equating discussed in Theorem
7. The result of assuming ignorability given X is the well-known formula
(i.e., Pearson, 1903) for the restriction-of-range-adjustment to Pxy1i which

is, in our notation,

Pxyi = Pnril(GX/axil)t[l - p2xyii p2xy1i(G2X/G2M1)1112.
(63)

If (63) is used, then to be consistent the anchor-test equating assumptions for
the missing data, i.e., Theorem 7, should be used rather than the chain
equating assumptions of Theorem 6. In our example the corrected
correlations are: .44, .51, .40, .48, .51, and .37. They are very nearly the
same as the uncorrected correlations mentioned at the end of section 8 and
the resulting adjusted essay scores are very nearly the same as those in
Tables 5 and 6 that use pxyii as the weights.
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In summary, we have introduced the Optional Essay Problem as a
useful paradigm example of examinee choice, and considered the problem of
equating the optional essays from two points of view. First, we looked at
how we might marshal evidence that the essays don't need to be equated at
all (sections 1 to 6). Second, we examined Livingston's proposal for
adjusting the essay scores and put it into the context of ordinary test equating
(section 7). This has two benefits. First, we can see how.to develop several
new alternative methods of essay score adjustment that each make different
assumptions about the missing data (sections 7 and 8). Second, all of these
methods easily generalize to the problem of equating the composite scores of
which the optional essays are a part( section 9).
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Table 1
Data from the 1987 Advanced Placement Euro ean Histo Exam

Subgroup
Selecting

Essay
Optional Essay Multiple Choice

XYil Piail 1-tXil GXI1

2 7.5 2.5 51.9 16.3 17.6 .32
3 8.4 2.3 57.7 15.8 17.4 .13
4 6.5 2.6 53.3 16.6 16.7 .16
5 7.4 2.5 52.0 15.9 18.1 .10
6 6.7 2.4 51.7 16.1 19.0 .11
7 5.9 2.5 42.7 16.9 15.8 .18

Total 7.1 2.6 51.3 16.9 20.2 1.00
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Data from a h
Subgroup
Selecting

Essay

othetical exam
Table 2
le showin a reversal, Livin ston (1988

Optional Essay
Gil

Multiple Choice
Pi

2 6.4 2.9 45.2 16.7 .06
3 6.9 2.4 47.7 15.6 .65
4 6.6 2.8 47.9 18.1 .02
5 5.9 2.4 48.8 15.6 .18
6 7.1 2.8 41.5 17.4 .09

3 6
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Table 3
Estimates of gi and ai using two sets of missing data assumptions.

Subgroup
Selecting
Essay

Anchor-test equating Chain-equatrY
assumptions assumptions

Pi
2 7.5 2.5 7.4 2.6
3 8.0 2.3 7.5 2.5
4 6.4 2.6 6.2 2.7
5 7.4 2.5 7.3 2.7
6 6.7 2.4 6.6 2.5
7 6.4 2.5 7.2 2.5

34



Table 4
Adjusted Essay Scores Using Livingston's 'Ad Hoc' Procedure

Score
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15

Essa To ics
2 3 4 5 6 7

0.9 0.7 1.4 1.0 1.1 0.9
1.9 1.7 2.4 2.0 2.1 1.9
2.9 2.7 3.4 3.0 3.1 2.9
3.9 3.8 4.4 3.9 4.2 3.9
4.9 4.8 5.4 4.9 5.2 4.9
5.9 5.8 6.4 5.9 6.2 5.9
6.8 6.8 7.4 6.9 7.2 6.9
7.8 7.8 8.3 7.9 8.2 8.0
8.8 8.8 9.3 8.9 9.2 9.0
9.8 9.9 10.3 9.8 10.2 10.0
10.8 10.9 11.3 10.8 11.2 11.0
11.8 11.9 12.3 11.8 12.2 12.0
12.8 12.9 13.3 12.8 13.2 13.0
13.8 13.9 14.3 13.8 14.2 14.0
14.8 14.9 15.2 14.8 15.2 15.0



Table 5
Adjusted Essay Scores Using (54) and Anchor-test Equating

Score
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15

Essa To les
2 3 4 5 6 7

0.7 0.1 1 3 0.8 1.0 1.2
1.7 1.2 2.3 1.8 2.0 2.2
2.8 2.3 3.3 2.8 3.1 3.2
3.8 3.3 4.3 3.8 4.1 4.2
4.8 4.4 5.3 4.8 5.1 5.2
5.8 5.4 6.3 5.8 6.2 6.3
6.8 6.5 7.3 6.9 7.2 7.3
7.8 7.6 8.3 7.9 8.3 8.3
8.9 8.6 9.3 8.9 9.3 9.3
9.9 9.7 10.3 9.9 10.3 10.3
10.9 10.8 11.3 10.9 11.4 11.3
11.9 11.8 12.3 12.0 12.4 12.4
12.9 12.9 13.3 13.0 13.5 13.4
13.9 13.9 14.3 14.0 14.5 14.4
15.0 15.0 15.3 15.0 15.5 15.4



Table 6
Adjusted Essay Scores Using (54) and Chain Equating

Score
1

2
3
4
5
6
7
8
9
10
11
12
13
14
15

Essa To ics
2 3 4 5 6 7

0.9 0.7 1.4 1.0 1.1 0.9
1.9 1.7 2.4 2.0 2.2 1.9
2.9 2.7 3.4 3.0 3.2 2.9
3.9 3.7 4.4 4.0 4.2 3.9
4.9 4.8 5.4 5.0 5.2 4.9
5.9 5.8 6.4 5.9 6.2 5.9
6.9 6.8 7.3 6.9 7.3 7.0
7.9 7.8 8.3 7.9 8.3 8.0
8.9 8.8 9.3 8.9 9.3 9.0
9.9 9.9 10.3 9.9 10.3 10.0
10.9 10.9 11.3 10.9 11.3 11.0
11.9 11.9 12.3 11.8 12.4 12.0
12.9 12.9 13.3 12.8 13.4 13.1
13.9 13.9 14.2 13.8 14.4 14.1
14.9 15.0 15.2 14.8 15.4 15.1
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Figure 1:
Graph of (5) & (6) for AL = 0.90 & AU = 1.10
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Figure 2:
Graph of (5) & (6) for AL = 0.90 & AU = 1.10
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Valiance

Figure 3:
Graph of (5) & (6) for AL = 0.95 & AU = 1.05
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Figure 4:
Graph of (21) & (22) for AL=BL=0.90, AU=BU=1.10
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Figure 5:
Graph of (21) & (22) for AII=B1=0.95, AU=BU=1.05
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